Association Between Biomarkers of Kidney Disorders and Atrial Fibrillation: A Literature Review
Abstract
Kidney diseases and atrial fibrillation often occur together. Renal impairment increases the risk of developing incident atrial fibrillation (AF) and is linked to it in a bidirectional manner, making it a prothrombotic and pro-hemorrhagic condition. In Japanese patients with nonvalvular AF, lower creatinine clearance values were associated with thromboembolism, all-cause death, and cardiovascular death, but not with major haemorrhage. Older individuals with elevated serum levels of cystatin C had a significantly higher prevalence of AF. Moderate to severe chronic kidney disease individuals with increased levels of fibroblast growth factor-23 were independently associated with prevalent and incident AF. A higher baseline glomerular filtration rate was associated with an increased risk of AF. Elevated levels of insulin-like growth factor binding protein-7 were also observed in AF patients, while reduced circulating tissue inhibitor of metalloproteinase 2 levels were also associated with an increased risk of AF. Patients with AF had higher levels of non-esterified fatty acids and liver type fatty acid binding protein. Interleukin-18 levels in blood plasma were also found to be higher in AF patients. Furthermore, higher baseline urea/blood urea nitrogen levels were significantly associated with the incidence of AF in women and kidney disease in both men and women.
Downloads
References
Bukowska A, Lendeckel U, Krohn A, Keilhoff G, Have ST, Neumann KH, Goette A. Atrial fibrillation down-regulates renal neutral endopeptidase expression and induces profibrotic pathways in the kidney. Europace. 2008;10(10):1212-7. https://doi.org/10.1093/europace/eun206
Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA, Chen SA, Chugh SS, Corradi D, D’Avila A, Dobrev D, Fenelon G, Gonzalez M, Hatem SN, Helm R, Hindricks G, Ho SY, Hoit B, Jalife J, Kim Y-H, Lip GYH, Ma C-S, Marcus GM, Murray K, Nogami A, Sanders P, Uribe W, Van Wagoner DR, Nattel S. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization,
and clinical implication. Ep Europace. 2016;18(10):1455-90. https://doi.org/10.1093/europace/euw161
Goette A. Atrial fibrillation and stroke risk factors induce decline in creatinine clearance: Is there a specific “fibrillatory kidney disease”? Int J Cardiol. 2018;253:82-3. https://doi.org/10.1016/j.ijcard.2017.11.052
Olesen JB, Lip GY, Kamper AL, Hommel K, Køber L, Lane DA, Lindhardsen J, Gislason GH, Torp-Pedersen C. Stroke and bleeding in atrial fibrillation with chronic kidney disease. New Engl J Med. 2012;367(7):625-35. https://doi.org/10.1056/NEJMoa1105594
Potpara TS, Ferro CJ, Lip GY. Use of oral anticoagulants in patients with atrial fibrillation and renal dysfunction. Nat Rev Nephrol. 2018;14(5):337-51. https://doi.org/10.1038/nrneph.2018.19
Zimmerman D, Sood MM, Rigatto C, Holden RM, Hiremath S, Clase CM. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol Dial Transplant. 2012;27(10):3816-22. https://doi.org/10.1093/ndt/gfs416
Banerjee A, Fauchier L, Vourc’h P, Andres CR, Taillandier S, Halimi JM, Lip GY. A prospective study of estimated glomerular filtration rate and outcomes in patients with atrial fibrillation: the Loire Valley Atrial Fibrillation Project. Chest. 2014;145(6):1370-82. https://doi.org/10.1378/chest.13-2103
Lau YC, Proietti M, Guiducci E, Blann AD, Lip GY. Atrial fibrillation and thromboembolism in patients with chronic kidney disease. J Am Coll Cardiol. 2016;68(13):1452-64. https://doi.org/10.1016/j.jacc.2016.06.057
Younes-Ibrahim MS, Younes-Ibrahim M. Biomarkers and kidney diseases: a brief narrative review. J Lab Precis Med 2022;7:20.https://doi.org/10.21037/jlpm-22-1
Eisner C, Faulhaber-Walter R, Wang Y, Leelahavanichkul A, Yuen PS, Mizel D, Star RA, Briggs JP, Levine M, Schnermann J. Major contribution of tubular secretion to creatinine clearance in mice. Kidney Int. 2010;77(6):519-26. https://doi.org/10.1038/ki.2009.501
Auer J, Lamm G, Weber T, Berent R, Ng CK, Porodko M, Eber B. Renal function is associated with risk of atrial fibrillation after cardiac surgery. Can J Cardiol. 2007;23(11):859-63. https://doi.org/10.1016/s0828-282x(07)70839-5
Wang J, Zhang T, Yang YM, Zhu J, Zhang H, Shao XH. Relationship between creatinine clearance and clinical outcomes in Chinese emergency patients with atrial fibrillation. Ann Noninvasive Electrocardiol. 2022;27(3):e12942. https://doi.org/10.1111/anec.12942
Cho SW, Hwang JK, Chun KJ, Park SJ, Park KM, Kim JS, On YK. Impact of moderate to severe renal impairment on long-term clinical outcomes in patients with atrial fibrillation. J Cardiol. 2017;69(3):577-83. https://doi.org/10.1016/j.jjcc.2016.04.006
Kodani E, Atarashi H, Inoue H, Okumura K, Yamashita T, Origasa H, J-RHYTHM Registry Investigators. Impact of creatinine clearance on outcomes in patients with non-valvular atrial fibrillation: a subanalysis of the J-RHYTHM Registry. Eur Heart J Qual Care Clin Outcomes. 2018;4(1):59-68. https://doi.org/10.1093/ehjqcco/qcx032
Kodani E, Inoue H, Atarashi H, Tomita H, Okumura K, Yamashita T, Origasa H, J-RHYTHM Registry Investigators. Predictive ability of creatinine clearance versus estimated glomerular filtration rate for outcomes in patients with non-valvular atrial fibrillation: Subanalysis of the J-RHYTHM Registry. Int J Cardiol Heart Vasc. 2020;29:100559. https://doi.org/10.1016%2Fj.ijcha.2020.100559
Abe M, Ogawa H, Ishii M, Masunaga N, Esato M, Chun YH, Tsuji H, Wada H, Hasegawa K, Lip GY, Akao M. Relation of stroke and major bleeding to creatinine clearance in patients with atrial fibrillation (from the Fushimi AF Registry). Am J Cardiol. 2017;119(8):1229-37. https://doi.org/10.1016/j.amjcard.2017.01.005
Yuzawa Y, Kuronuma K, Okumura Y, Yokoyama K, Matsumoto N, Tachibana E, Oiwa K, Matsumoto M, Kojima T, Haruta H, Nomoto K, Sonoda K, Arima K, Kogaewa R, Takahashi F, Kotani T, Okubo K, Fukushima S, Itou S, Kondo K, Chiku M, Ohno Y, Onikura M, Hirayama
A. Relationship between the renal function and adverse clinical events in patients with atrial fibrillation: a Japanese Multicenter Registry Substudy. J Clin Med. 2020;9(1):167. https://doi.org/10.3390/jcm9010167
Kopitar-Jerala N. The role of cysteine proteinases and their inhibitors in the host-pathogen cross talk. Curr Protein Pept Sci. 2012;13(8):767-75. https://doi.org/10.2174%2F138920312804871102
Svensson-Farbom P, Ohlson Andersson M, Almgren P, Hedblad B, Engström G, Persson M, Christensson A, Melander O. Cystatin C identifies cardiovascular risk better than creatinine-based estimates of glomerular filtration in middle-aged individuals without a history of cardiovascular disease. J Intern Med. 2014;275(5):506-21. https://doi.org/10.1111/joim.12169
Salgado JV, Souza FL, Salgado BJ. How to understand the association between cystatin C levels and cardiovascular disease: imbalance, counterbalance, or consequence? J Cardiol. 2013;62(6):331-5. https://doi.org/10.1016/j.jjcc.2013.05.015
Jin LL, You L, Xie RQ. Value of cystatin C in predicting atrial fibrillation recurrence after radiofrequency catheter ablation. J Geriatr Cardiol. 2018;15(12):725-31. https://doi.org/10.11909%2Fj.issn.1671-5411.2018.12.008
Šálek T, Vodička M, Gřiva M. Cystatin C may be better than creatinine for digoxin dosing in older adults with atrial fibrillation. J Clin Lab Anal. 2020;34(10):e23427. https://doi.org/10.1002/jcla.23427
Liu P, Jiang Y, Meng J. Clinical association of cystatin C and atrial fibrillation in Chinese elderly. Int J Gerontol. 2015;9(3):146-50. https://doi.org/10.1016/j.ijge.2015.05.015
Duan Y, Xu J, Hu W, Li P, Li R. The Relevance of Serum Cystatin C Level of Different Classification of Atrial Fibrillation. Int J Clin Med. 2019;10(8):404. https://doi.org/10.4236/ijcm.2019.108033
Hijazi Z, Granger CB, Hohnloser SH, Westerbergh J, Lindbäck J, Alexander JH, Keltai M, Parkhomenko A, López-Sendón JL, Lopes RD, Siegbahn A, Wallentin L. Association of different estimates of renal function with cardiovascular mortality and bleeding in atrial fibrillation. J Am Heart Assoc. 2020;9(18):e017155. https://doi.org/10.1161/jaha.120.017155
You L, Wang P, Lv J, Cianflone K, Wang D, Zhao C. The role of high-sensitivity C-reactive protein, interleukin-6 and cystatin C in ischemic stroke complicating atrial fibrillation. J Huazhong Univ Sci Technol Med Sci. 2010;30:648-51. https://doi.org/10.1007/s11596-010-0558-6
Christov M, Neyra JA, Gupta S, Leaf DE. Fibroblast Growth Factor 23 and Klotho in AKI. Semin Nephrol. 2019;39(1):57-75. https://doi.org/10.1016/j.semnephrol.2018.10.005
Christov M, Waikar SS, Pereira RC, Havasi A, Leaf DE, Goltzman D, Pajevic PD, Wolf M, Jüppner H. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 2013;84(4):776-85. https://doi.org/10.1038/ki.2013.150
Mehta R, Cai X, Lee J, Scialla JJ, Bansal N, Sondheimer JH, Chen J, Hamm LL, Ricardo AC, Navaneethan SD, Deo R, Rahman M, Feldman HI, Go AS, Isakova T, Wolf M. Association of fibroblast growth factor 23 with atrial fibrillation in chronic kidney disease, from the chronic renal insufficiency cohort study. JAMA Cardiol. 2016;1(5):548-56. https://doi.org/10.1001%2Fjamacardio.2016.1445
Mathew JS, Sachs MC, Katz R, Patton KK, Heckbert SR, Hoofnagle AN, Alonso A, Chonchol M, Deo R, Ix JH, Siscovick DS, Kestenbaum B, Boer IH. Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation. 2014;130(4):298-307. https://doi.org/10.1161/circulationaha.113.005499
Jadhav KP, Pai PG, Nair I, Krishnan S, Varma PK. Role of fibroblast growth factor-23 (FGF-23) in the prediction of postoperative atrial fibrillation after coronary artery bypass surgery. Indian J Thorac Cardiovasc Surg. 2022;38(3):251-61. https://doi.org/10.1007/s12055-021-01328-5
Tan Z, Huang S, Liu M, Song T, Zhu W, Ma J, Zhang J, Yu P, Liu X. Relationship between serum growth differentiation factor 15, fibroblast growth factor-23 and risk of atrial fibrillation: a systematic review and meta-analysis. Front Cardiovasc Med. 2022 Aug 4;9:899667. https://doi.org/10.3389/fcvm.2022.899667
Miyamura M, Fujita SI, Morita H, Sakane K, Okamoto Y, Sohmiya K, Hoshiga M, Ishizaka N. Circulating fibroblast growth factor 23 has a U-shaped association with atrial fibrillation prevalence. Circulation J. 2015;79(8):1742-8. https://doi.org/10.1253/circj.CJ-15-0413
Chua W, Law JP, Cardoso VR, Purmah Y, Neculau G, Jawad-Ul-Qamar M, Russell K, Turner A, Tull SP, Nehaj F, Brady P, Kastner P, Ziegler A, Gkoutos GV, Pavlovic D, Ferro CJ, Kirchhof P, Fabritz L. Quantification of fibroblast growth factor 23 and N-terminal pro-B-type natriuretic peptide to identify patients with atrial fibrillation using a high-throughput platform: A validation study. PLoS Med. 2021;18(2):e1003405. https://doi.org/10.1371/journal.pmed.1003405
Boriani G, Savelieva I, Dan GA, Deharo JC, Ferro C, Israel CW, Lane DA, La Manna G, Morton J, Mitjans AM, Vos MA. Chronic kidney disease in patients with cardiac rhythm disturbances or implantable electrical devices: clinical significance and implications for decision making-a position paper of the European Heart Rhythm Association endorsed by the Heart Rhythm Society and the Asia
Pacific Heart Rhythm Society. Ep Europace. 2015;17(8):1169-96.https://doi.org/10.1093/europace/euv202
Eknoyan G, Lameire N, Eckardt K, Kasiske B, Wheeler D, Levin A, Stevens PE, Bilous RW, Lamb EJ, Coresh JJ. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3(1):5-14.
Wan H, Wang J, Yang Y, Fan X, Chen D, Bian N. Impact of estimated glomerular filtration rate on long-term clinical outcomes among Chinese patients with atrial fibrillation. BMC Cardiovasc Disord. 2020;20(1):490. https://doi.org/10.1186/s12872-020-01786-6
van der Burgh AC, Geurts S, Ikram MA, Hoorn EJ, Kavousi M, Chaker L. Bidirectional Association Between Kidney Function and Atrial Fibrillation: A Population-Based Cohort Study. J Am Heart Assoc. 2022;11(10):e025303. https://doi.org/10.1161/jaha.122.025303
Mlodawska E, Tomaszuk-Kazberuk A, Lopatowska P, Bachorzewska-Gajewska H, Malyszko J, Dobrzycki S, Musial WJ. Is There Association Between Changes in eGFR Value and the Risk of Permanent Type of Atrial Fibrillation?-Analysis of Valvular and Non- Valvular Atrial Fibrillation Population. Kidney Blood Press Res. 2014;39(6):600-8. https://doi.org/10.1159/000368473
Suzuki S, Sagara K, Otsuka T, Kanou H, Matsuno S, Uejima T, Oikawa Y, Koike A, Nagashima K, Kirigaya H, Yajima J, Sawada H, Aizawa T, Yamashita T. Estimated glomerular filtration rate and proteinuria are associated with persistent form of atrial fibrillation: analysis in Japanese patients. J Cardiol. 2013;61(1):53-7. https://doi.org/10.1016/j.jjcc.2012.07.016
Shen Y, Chen H, Yang G, Ju W, Zhang F, Gu K, Cui C, Li M, Chen M. Changes in Renal Function in Patients with Recurrence of Atrial Arrhythmia after an Initial Catheter Ablation. Int J Clin Pract. 2022;2022:6923377. https://doi.org/10.1155/2022/6923377
Sandhu RK, Kurth T, Conen D, Cook NR, Ridker PM, Albert CM. Relation of renal function to risk for incident atrial fibrillation in women. Am J Cardiol. 2012;109(4):538-42. https://doi.org/10.1016%2Fj.amjcard.2011.10.006
Boriani G, Laroche C, Diemberger I, Popescu MI, Rasmussen LH, Petrescu L, Crijns HJGM, Tavazzi L, Maggioni AP, Lip GYH. Glomerular filtration rate in patients with atrial fibrillation and 1-year outcomes. Sci Rep. 2016;6:30271. https://doi.org/10.1038/srep30271
Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017;55(8):1074-89. https://doi.org/10.1515/cclm-2016-0973
Blum S, Aeschbacher S, Meyre P, Kühne M, Rodondi N, Beer JH, Ammann P, Moschovitis G, Bonati LH, Blum MR, Kastner P, Baguley F, Sticherling C, Osswald S, Conen D. Insulin-like growth factor-binding protein 7 and risk of congestive heart failure hospitalization in patients with atrial fibrillation. Heart Rhythm. 2021;18(4):512-9. https://doi.org/10.1016/j.hrthm.2020.11.028
Meessen JM, Cesaroni G, Mureddu GF, Boccanelli A, Wienhues-Thelen UH, Kastner P, Ojeda-Fernandez L, Novelli D, Bazzoni G, Mangiavacchi M, Agabiti N, Masson S, Staszewsky L, Latini R. IGFBP7 and GDF-15, but not P1NP, are associated with cardiacalterations and 10-year outcome in an elderly community-based study. BMC Cardiovasc Disord. 2021;21(1):328. https://doi.org/10.1186/s12872-021-02138-8
Wang W, Wu PS, Yang XL. Role of matrix metalloproteinase and tissue inhibitor of metalloproteinase in atrial structural remodeling in patients with atrial fibrillation. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30(5):1160-2.
Liu Y, Xu B, Wu N, Xiang Y, Wu L, Zhang M, Wang J, Chen X, Li Y, Zhong L. Association of MMPs and TIMPs with the occurrence of atrial fibrillation: a systematic review and meta-analysis. Can J Cardiol. 2016;32(6):803-13. https://doi.org/10.1016/j.cjca.2015.08.001
Bass NM. The cellular fatty acid binding proteins: aspects of structure, regulation, and function. Int Rev Cytol. 1988;111:143-84. https://doi.org/10.1016/s0074-7696(08)61733-7
Odeh A, Dungan GD, Darki A, Hoppensteadt D, Siddiqui F, Kantarcioglu B, Fareed J, Syed MA. Collagen Remodeling and Fatty Acid Regulation Biomarkers in Understanding the Molecular Pathogenesis of Atrial Fibrillation. Clin Appl Thromb Hemost. 2022;28:10760296221145181. https://doi.org/10.1177/10760296221145181
Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest. 2001;107(9):1145-52. https://doi.org/10.1172/jci12089
Rafaqat S, Rafaqat S, Rafaqat S. Major Interleukins: Role in the Pathogenesis of Atrial Fibrillation. J Cardiac Arrhythmias. 2022;35:e0422.https://doi.org/10.24207/jca.v35i1.3470
Luan Y, Guo Y, Li S, Yu B, Zhu S, Li S, Li N, Tian Z, Peng C, Cheng J, Li Q, Cui J, Tian Y. Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace. 2010;12(12):1713-8. https://doi.org/10.1093/europace/euq321
Wang YH, Fu L, Wang B, Li SF, Sun Z, Luan Y. Genetic variants of interleukin-18 are associated with reduced risk of atrial fibrillation in a population from Northeast China. Gene. 2017;626:269-74. https://doi.org/10.1016/j.gene.2017.05.034
Jia X, Buckley L, Sun C, Al Rifai M, Yu B, Nambi V, Virani SS, Selvin E, Matsushita K, Hoogeveen RC, Coresh J, Shah AM, Ballantyne CM. Association of Interleukin-6 and Interleukin-18 With Global Cardiovascular Disease in Older Adults. Circulation. 2022;146(Suppl.1):A11125. https://doi.org/10.1161/circ.146.suppl_1.11125
Mori K, Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007;71(10):967-70. https://doi.org/10.1038/sj.ki.5002165
Yndestad A, Landrø L, Ueland T, Dahl CP, Flo TH, Vinge LE, Espevik T, Froland SS, Husberg C, Christensen G, Dickstein K, Kjekshus J, Oie E, Gullestad L, Aukrust P. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;30(10):1229-36. https://doi.org/10.1093/eurheartj/ehp088
Villacorta H, Santos RA, Marroig MA, Pereira GPG, Xavier AR, Kanaan S. Prognostic value of plasma neutrophil gelatinase-associated lipocalin in patients with heart failure. Rev Port Cardiol. 2015;34(7-8):473-8. https://doi.org/10.1016/j.repc.2015.02.003
Argan O, Ural D, Kozdag G, Sahin T, Bozyel S, Aktas M, Karauzum K, Yilmaz I, Dervis E, Agir A. Associations Between Neutrophil Gelatinase Associated Lipocalin, Neutrophil-to-Lymphocyte Ratio, Atrial Fibrillation and Renal Dysfunction in Chronic Heart Failure. Med Sci Monit. 2016;22:4765-72. https://doi.org/10.12659/msm.898608
Matsue Y, van der Meer P, Damman K, Metra M, O’Connor CM, Ponikowski P, Teerlink JR, Cotter G, Davison B, Cleland JG, Givertz MM, Bloomfield DM, Dittrich HC, Gansevoort RT, Bakker SJL, Harst P, Hillege HL, Veldhuisen D, Voors AA. Blood urea nitrogen-to-creatinine ratio in the general population and in patients with acute heart failure. Heart. 2017;103(6):407-13. https://doi.org/10.1136/heartjnl-2016-310112
Gary T, Pichler M, Schilcher G, Hafner F, Hackl G, Rief P, Eller P, Brodmann M. Elevated blood urea nitrogen is associated with critical limb ischemia in peripheral arterial disease patients. Medicine. 2015;94(24):e948. https://doi.org/10.1097/md.0000000000000948
Faisst M, Wellner UF, Utzolino S, Hopt UT, Keck T. Elevated blood urea nitrogen is an independent risk factor of prolonged intensive care unit stay due to acute necrotizing pancreatitis. J Crit Care. 2010;25(1):105-11. https://doi.org/10.1016/j.jcrc.2009.02.002
Arihan O, Wernly B, Lichtenauer M, Franz M, Kabisch B, Muessig J, Masyuk M, Lauten A, Schulze PC, Hoppe UC, Kelm M, Jung C. Blood urea nitrogen (BUN) is independently associated with mortality in critically ill patients admitted to ICU. PLoS One. 2018;13(1):e0191697. https://doi.org/10.1371/journal.pone.0191697
Lan Q, Zheng L, Zhou X, Wu H, Buys N, Liu Z, Sun J, Fan H. The Value of Blood Urea Nitrogen in the Prediction of Risks of Cardiovascular Disease in an Older Population. Front Cardiovasc Med. 2021;8:614117. https://doi.org/10.3389/fcvm.2021.614117